搜索文章:
期刊:
主题:

期刊目次

2024年·卷3·期  1
2023年·卷2·期  1
2022年·卷1·期  1
综述 · Review

母胎免疫耐受机制及研究进展

Maternal–Fetal Immune Tolerance: Cellular Mechanisms and Emerging Insights


作者:喻鑫杰1,杨励勤4,潘文京2,3,*,刘洪娜2,3,*
1湖南工业大学 医用纳米材料与器件湖南省重点实验室 湖南 株洲
2南华大学 衡阳医学院 湖南 衡阳
3南华大学 国家卫生健康委出生缺陷研究与预防重点实验室 湖南  长沙
4南华大学 湖南省妇幼保健院 湖南 长沙
*通信作者:潘文京,刘洪娜;单位:南华大学 国家卫生健康委出生缺陷研究与预防重点实验室 湖南 长沙
环球医学进展, 2024, 3(1), 1-8; 10.12414/glmedp.250476
提交日期 : 2024年09月24日 丨 录用日期 : 2024年12月12日 丨 出版日期 : 2024年12月20日
课题资助:基于宏基因组测序临床病原体全自动检测关键技术研究(22A0385)
引用本文
摘 要:
目的:妊娠被认为是一种典型的免疫耐受状态,但是母体对表达父源抗原的胎儿组织产生选择性免疫耐受的机制,迄今尚未完全阐明。近年来,关于母胎界面免疫调控的研究持续增多,逐步揭示了免疫细胞在构建局部免疫耐受微环境中的潜在作用;胎盘滋养层细胞也被认为在调控母体免疫应答中发挥重要功能。然而,目前关于母胎免疫耐受的细胞协同模式、分子调控网络及其在妊娠各阶段动态建立与维持的机制尚不清晰。本文拟在整合现有证据基础上,系统梳理母胎免疫耐受的主要细胞与分子机制,展望未来发展与转化方向。
关键词:母胎免疫耐受;调节性T细胞;免疫检查点;蜕膜自然杀伤细胞;妊娠相关免疫并发症
 
Abstract: 
Pregnancy is widely regarded as a physiological state of immune tolerance; however, the mechanisms by which the maternal immune system selectively tolerates fetal tissues expressing paternal antigens remain incompletely understood. In recent years, a growing body of research has focused on the immunoregulatory processes at the maternal–fetal interface, gradually uncovering the pivotal roles of immune cells in shaping a localized immune-tolerant microenvironment. Placental trophoblasts have also been implicated as active participants in modulating maternal immune responses. Despite these advances, the cellular crosstalk, regulatory molecular networks, and dynamic mechanisms underlying the establishment and maintenance of maternal–fetal immune tolerance throughout gestation remain to be fully elucidated. This review aims to systematically summarize the current understanding of key cellular and molecular mechanisms involved in maternal–fetal immune tolerance and to discuss future directions and translational prospects in this emerging field.
Keywords: Maternal fetal immune tolerance; Regulatory T cells; Immune checkpoint; Decidual natural killer cells; Pregnancy related immune complications
 
--
正文内容 / Content:
可下载并阅读全文PDF,请按照本文版权许可使用。
Download the full text PDF for viewing and using it according to the license of this paper.

参考文献 / References: 
  1. Yang F, Zheng Q, Jin L. Dynamic Function and Composition Changes of Immune Cells During Normal and Pathological Pregnancy at the Maternal-Fetal Interface[J/OL]. Frontiers in Immunology, 2019, 10[2024-09-08]. https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2019.02317/full. DOI:10.3389/fimmu.2019.02317.
  2. Tao Y, Li Y H, Piao H L, et al. CD56brightCD25+ NK cells are preferentially recruited to the maternal/fetal interface in early human pregnancy[J/OL]. Cellular & Molecular Immunology, 2015, 12(1): 77-86. DOI:10.1038/cmi.2014.26.
  3. Semmes E C, Coyne C B. Innate immune defenses at the maternal-fetal interface[J/OL]. Current Opinion in Immunology, 2022, 74: 60-67. DOI:10.1016/j.coi.2021.10.007.
  4. Ding J, Zhang Y, Cai X, et al. Crosstalk Between Trophoblast and Macrophage at the Maternal-Fetal Interface: Current Status and Future Perspectives[J/OL]. Frontiers in Immunology, 2021, 12[2024-09-08]. https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2021.758281/full. DOI:10.3389/fimmu.2021.758281.
  5. Ander S E, Diamond M S, COYNE C B. Immune responses at the maternal-fetal interface[J/OL]. Science Immunology, 2019, 4(31): eaat6114. DOI:10.1126/sciimmunol.aat6114.
  6. Jiang X, Wang H. Macrophage subsets at the maternal-fetal interface[J/OL]. Cellular & Molecular Immunology, 2020, 17(8): 889-891. DOI:10.1038/s41423-020-0435-6.
  7. Arenas-Hernandez M, Romero R, St Louis D, et al. An imbalance between innate and adaptive immune cells at the maternal–fetal interface occurs prior to endotoxin-induced preterm birth[J/OL].Cellular & Molecular Immunology, 2016, 13(4): 462-473. DOI:10.1038/cmi.2015.22.
      
  8. Dong S, Fu C, Shu C, et al. Development of a humanized mouse model with functional human materno-fetal interface immunity[J/OL]. JCI Insight, 9(20): e176527. DOI:10.1172/jci.insight.176527.
  9. Salvany-Celades M, Zwan A Van Der, Benner M, et al. Three Types of Functional Regulatory T Cells Control T Cell Responses at the Human Maternal-Fetal Interface[J/OL]. Cell Reports, 2019, 27(9): 2537-2547.e5. DOI:10.1016/j.celrep.2019.04.109.
  10. Greenbaum S, Averbukh I, Soon E, et al. A spatially resolved timeline of the human maternal–fetal interface[J/OL]. Nature, 2023, 619(7970): 595-605. DOI:10.1038/s41586-023-06298-9.
  11. Huang C C, Hsueh Y W, Chang C W, et al. Establishment of the fetal-maternal interface: developmental events in human implantation and placentation[J/OL]. Frontiers in Cell and Developmental Biology, 2023, 11[2024-09-08]. https://www.frontiersin.org/journals/cell-and-developmental-biology/articles/10.3389/fcell.2023.1200330/full. DOI:10.3389/fcell.2023.1200330.
  12. Tsuda S, Nakashima A, Shima T, et al. New Paradigm in the Role of Regulatory T Cells During Pregnancy[J/OL]. Frontiers in Immunology, 2019, 10[2024-09-08]. https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2019.00573/full. DOI:10.3389/fimmu.2019.00573.
  13. Aluvihare V R, Kallikourdis M, Betz A G. Regulatory T cells mediate maternal tolerance to the fetus[J/OL]. Nature Immunology, 2004, 5(3): 266-271. DOI:10.1038/ni1037.
  14. Ma L, Li G, Cao G, et al. dNK cells facilitate the interaction between trophoblastic and endothelial cells via VEGF-C and HGF[J/OL]. Immunology & Cell Biology, 2017, 95(8): 695-704. DOI:10.1038/icb.2017.45.
  15. Zhang J, Dunk C E, Shynlova O, et al. TGFb1 suppresses the activation of distinct dNK subpopulations in preeclampsia[J/OL]. eBioMedicine, 2019, 39: 531-539. DOI:10.1016/j.ebiom.2018.12.015.
  16. Ferreira L M R, Meissner T B, Tilburgs T, et al. HLA-G: At the Interface of Maternal–Fetal Tolerance[J/OL]. Trends in Immunology, 2017, 38(4): 272-286. DOI:10.1016/j.it.2017.01.009.
  17. Tilburgs T, Evans J H, Crespo  C, et al. The HLA-G cycle provides for both NK tolerance and immunity at the maternal–fetal interface[J/OL]. Proceedings of the National Academy of Sciences, 2015, 112(43): 13312-13317. DOI:10.1073/pnas.1517724112.
  18. Erlebacher A. Immunology of the Maternal-Fetal Interface[J/OL]. Annual Review of Immunology, 2013, 31(Volume 31, 2013): 387-411. DOI:10.1146/annurev-immunol-032712-100003.
  19. Wang X Q, Zhou W J, Hou X X, et al. Trophoblast-derived CXCL16 induces M2 macrophage polarization that in turn inactivates NK cells at the maternal–fetal interface[J/OL]. Cellular & Molecular Immunology, 2018, 15(12): 1038-1046. DOI:10.1038/s41423-018-0019-x.
  20. Tagliani E, Erlebacher A. Dendritic cell function at the maternal–fetal interface[J/OL]. Expert Review of Clinical Immunology, 2011[2024-09-08]. https://www.tandfonline.com/doi/abs/10.1586/eci.11.52. DOI:10.1586/eci.11.52.
  21. Blois S M, Freitag N, Tirado-González I, et al. NK cell-derived IL-10 is critical for DC-NK cell dialogue at the maternal-fetal interface[J/OL]. Scientific Reports, 2017, 7(1): 2189. DOI:10.1038/s41598-017-02333-8.
  22. Zhang Y, Liu Z, Sun H. Fetal-maternal interactions during pregnancy: a ‘three-in-one’ perspective[J/OL]. Frontiers in Immunology, 2023, 14[2024-09-08]. https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2023.1198430/full. DOI:10.3389/fimmu.2023.1198430.
  23. Li X, Zhou ,Jiayi, Fang ,Min, et al. Pregnancy immune tolerance at the maternal-fetal interface[J/OL]. International Reviews of Immunology, 2020, 39(6): 247-263. DOI:10.1080/08830185.2020.1777292.
  24. Boyson J E, Aktan ,I., Barkhuff ,D. A., et al. NKT Cells at the Maternal-Fetal Interface[J/OL]. Immunological Investigations, 2008, 37(5-6): 565-582. DOI:10.1080/08820130802191409.
  25. Boyson J E, Rybalov B, Koopman L A, et al. CD1d and invariant NKT cells at the human maternal–fetal interface[J/OL]. Proceedings of the National Academy of Sciences, 2002, 99(21): 13741-13746. DOI:10.1073/pnas.162491699.
  26. Palmeira P, Quinello C, Silveira-Lessa A L, et al. IgG Placental Transfer in Healthy and Pathological Pregnancies[J/OL]. Journal of Immunology Research, 2012, 2012(1): 985646. DOI:10.1155/2012/985646.
  27. Du M R, Wang S C, Li D J. The integrative roles of chemokines at the maternal–fetal interface in early pregnancy[J/OL]. Cellular & Molecular Immunology, 2014, 11(5): 438-448. DOI:10.1038/cmi.2014.68.
  28. Wiley K S, Martínez L E, Kwon D, Et al. Regulatory B-Cells Are Associated Negatively With Regulatory T-Cells and Positively With Cytokines in Peripheral Blood of Pregnant Women[J/OL]. American Journal of Reproductive Immunology, 2025, 93(2): e70027. DOI:10.1111/aji.70027.
  29. Costa M L, Robinette M L, Bugatti M, et al. Two Distinct Myeloid Subsets at the Term Human Fetal–Maternal Interface[J/OL]. Frontiers in Immunology, 2017, 8[2024-09-08]. https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2017.01357/full. DOI:10.3389/fimmu.2017.01357.
  30. Joo J S, Lee D, Hong J Y. Multi-Layered Mechanisms of Immunological Tolerance at the Maternal-Fetal Interface[J/OL]. Immune Network, 2024, 24(4): e30. DOI:10.4110/in.2024.24.e30.
  31. Alexandrova M, Manchorova D, Dimova T. Immunity at maternal–fetal interface: KIR/HLA (Allo)recognition[J/OL]. Immunological Reviews, 2022, 308(1): 55-76. DOI:10.1111/imr.13087.
  32. Ma Y, Qian Y, Jiang H, et al. Combined maternal KIR2DL4 and fetal HLA-G polymorphisms were associated with preeclampsia in a Han Chinese population[J/OL]. Frontiers in Genetics, 2024, 15[2024-09-08]. https://www.frontiersin.org/journals/genetics/articles/10.3389/fgene.2024.1442938/full. DOI:10.3389/fgene.2024.1442938.
  33. Wang S, Liu Y, Liang Y, et al. Excessive Immune Activation and the Correlation with Decreased Expression of PD-1 at the Maternal–Fetal Interface in Preeclampsia[J/OL]. Reproductive Sciences, 2023, 30(1): 192-202. DOI:10.1007/s43032-022-01003-z.
  34. Meggyes M, Miko E, Szigeti B, et al. The importance of the PD-1/PD-L1 pathway at the maternal-fetal interface[J/OL]. BMC Pregnancy and Childbirth, 2019, 19(1): 74. DOI:10.1186/s12884-019-2218-6.
  35. Moore A R, Gonzalez N V, Plummer K A, et al. Gestationally dependent immune organization at the maternal-fetal interface[J/OL]. Cell Reports, 2022, 41(7)[2024-09-08]. https://www.cell.com/cell-reports/abstract/S2211-1247(22)01522-4. DOI:10.1016/j.celrep.2022.111651.
  36. Yang D, Dai F, Yuan M, et al. Role of Transforming Growth Factor-β1 in Regulating Fetal-Maternal Immune Tolerance in Normal and Pathological Pregnancy[J/OL]. Frontiers in Immunology, 2021, 12[2024-09-08]. https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2021.689181/full. DOI:10.3389/fimmu.2021.689181.
  37. Osokine I, Siewiera J, Rideaux D, et al. Gene silencing by EZH2 suppresses TGF-β activity within the decidua to avert pregnancy-adverse wound healing at the maternal-fetal interface[J/OL]. Cell Reports, 2022, 38(5)[2024-09-08]. https://www.cell.com/cell-reports/abstract/S2211-1247(22)00045-6. DOI:10.1016/j.celrep.2022.110329.
  38. Vento-Tormo R, Efremova M, Botting R A, et al. Single-cell reconstruction of the early maternal–fetal interface in humans[J/OL]. Nature, 2018, 563(7731): 347-353. DOI:10.1038/s41586-018-0698-6.
  39. Bansal A S. Joining the Immunological Dots in Recurrent Miscarriage[J/OL]. American Journal of Reproductive Immunology, 2010, 64(5): 307-315. DOI:10.1111/j.1600-0897.2010.00864.x.
  40. Wang F, Jia W, Fan M, Et al. Single-Cell Immune Landscape of Human Recurrent Miscarriage[J/OL]. Genomics, Proteomics & Bioinformatics, 2021, 19(2): 208-222. DOI:10.1016/j.gpb.2020.11.002.
  41. Yamamoto M, Fukui A, Mai C, et al. Evaluation of NKp46 expression and cytokine production of decidual NK cells in women with recurrent pregnancy loss[J/OL]. Reproductive Medicine and Biology, 2022, 21(1): e12478. DOI:10.1002/rmb2.12478.
  42. Deer E, Herrock O, Campbell N, et al. The role of immune cells and mediators in preeclampsia[J/OL]. Nature Reviews Nephrology, 2023, 19(4): 257-270. DOI:10.1038/s41581-022-00670-0.
  43. Li M, Piao L, Chen C P, et al. Modulation of Decidual Macrophage Polarization by Macrophage Colony-Stimulating Factor Derived from First-Trimester Decidual Cells: Implication in Preeclampsia[J/OL]. The American Journal of Pathology, 2016, 186(5): 1258-1266.DOI:10.1016/j.ajpath.2015.12.021.
  44. Pourakbari R, Parhizkar F, Soltani‐Zangbar M S, et al. Preeclampsia-Derived Exosomes Imbalance the Activity of Th17 and Treg in PBMCs from Healthy Pregnant Women[J/OL]. Reproductive Sciences, 2023, 30(4): 1186-1197. DOI:10.1007/s43032-022-01059-x.

喻鑫杰, 杨励勤, 潘文京, 等. 母胎免疫耐受机制及研究进展[J]. 环球医学进展, 2024, 3(1): 1-8.

由此登陆,开启投稿之旅: