搜索文章:
期刊:
主题:
文章

人类辅助生殖实验室环境挥发性有机化合物国际专家共识与现状解读

李红星1,*,  李文强1,  薛石龙2,  宋德潇2,  孙亮2,  席亚明1

1兰州大学第一临床医学院,兰州 730000,甘肃

2兰州大学第一医院生殖医学中心,兰州 730000,甘肃

环球医学进展, 2022, 1(1), 50-55; 123456-123456
提交日期 : 03 Jan 2023 / 修定日期 : 12 Feb 2023 / 录用日期 : 14 Feb 2023 / 出版日期 : 15 Feb 2023
资助/贡献:甘肃省青年科技基金(20JR10RA705);甘肃省高等学校创新基金(2021B-008);兰州大学第一医院院内基金(ldyyyn2021-15);兰州大学学生创新创业计划项目(20220060217)。
引用本文

 
摘 要:
目的:胚胎发育是一个非常复杂和精细调控的过程,胚胎培养不仅需要良好的培养液体系,而且依赖于体外受精实验室整个空气环境。2017年开罗国际辅助生育技术专家会议就实验室空气质量的技术和操作等方面达成数十项共识,涉及辅助生殖实验室选址、新建设施的设计标准、实验室调试、挥发性有机化合物持续管理等方面,为现有实验室提供了标杆,为新建实验室提供了指引。我们针对人类辅助生殖实验室环境挥发性有机化合物国际专家共识与我国现状,对实验室污染物(挥发性有机化合物)是否影响以及如何影响卵母细胞受精和胚胎发育的文献进行检索,总结实验室挥发性有机化合物类型、来源、可能造成的有害影响以及环境质量控制。不同类型挥发性有机化合物可能会影响细胞结构和细胞通讯,改变特定基因表达,并使其更容易受到遗传突变的影响。同时,挥发性有机化合物对卵母细胞受精、囊胚发育、孵化和着床等方面的可能存在不良影响,这些不良影响与临床结果呈负相关。
关键字:挥发性有机化合物;质量控制;胚胎发育
 
Abstract:
Objectives: Embryo development is a very complex and finely regulated process. Embryo culture not only requires a good culture medium system, but also depends on the entire air environment of the in vitro fertilization laboratory. In 2017, the Cairo International Expert Meeting on assisted Reproductive Technology reached dozens of conssions on the technical and operation aspects of laboratory air quality, including the location of assisted reproductive laboratories, the design standards of new facilities, laboratory commissioning, and the continuous management of volatile organic compounds, which provided a reference for existing laboratories and guidance for new laboratories. Based on the international expert consensus on volatile organic compounds in human assisted reproductive laboratory environment and the current situation in China, we searched the literature on whether and how the laboratory pollutants (volatile organic compounds) affect oocyte fertilization and embryo development, and summarized the types, sources, possible harmful effects and environmental quality control of volatile organic compounds in laboratory. Different types of vocs may affect cellular structure and cell communication, alter specific gene expression, and make them more susceptible to genetic mutations. At the same time, volatile organic compounds may have adverse effects on oocyte fertilization, blastocyst development, hatching and implantation, which are negatively correlated with clinical outcomes.
Keywords: Volatile organic compounds; Quality control; Development of embryos
 
--
正文内容 / Content:
可下载全文PDF查阅,并按照本文版权申明进行使用。
Download the full text PDF for viewing and using it according to the license of this paper.
 

 
参考文献 / References: 
  1.   Agarwal N, Chattopadhyay R, Ghosh S, et al. Volatile organic compounds and good laboratory practices in the in vitro fertilization laboratory: the important parameters for successful outcome in extended culture[J].Journal of   Assisted Reproduction and Genetics, 2017, 34(8): 999-1006.
  2. Pollet-Villard X, Levy R. Impact of air quality on practices and results in the IVF laboratory[J]. Gynecologie, Obstetrique, Fertilite, Senologie, 2018, 46(10): 713-728.
  3. Conforti A, Mascia M, Cioffi G, et al. Air pollution and female fertility: a systematic review of literature [J]. Reproductive Biology and Endocrinology : RB&E, 2018, 16(1): 117.
  4. Mortimer D, Cohen J, Mortimer ST, et al. Cairo consensus on the IVF laboratory environment and air quality: report of an expert meeting [J]. Reproductive Biomedicine Online, 2018, 36(6): 658-674.
  5. Wale PL, Gardner DK. The effects of chemical and physical factors on mammalian embryo culture and their importance for the practice of assisted human reproduction [J]. Human Reproduction Update, 2016, 22(1): 2-22.
  6. Maggiulli R, Giancani A, Fabozzi G, et al. Assessment and management of the risk of SARS-CoV-2 infection in an IVF laboratory [J]. Reproductive Biomedicine Online, 2020, 41(3): 385-394.
  7. Quraishi SM, Lin PC, Richter KS, et al. Ambient air pollution exposure and fecundability in women undergoing in vitro fertilization [J]. Environmental Epidemiology (Philadelphia, Pa.), 2019, 3(1): e036.
  8. Alviggi C, Guadagni R, Conforti A, et al. Association between intrafollicular concentration of benzene and outcome of controlled ovarian stimulation in IVF/ICSI cycles: a pilot study [J].Journal of Ovarian Research, 2014, 7: 67.
  9. Morbeck DE. Air quality in the assisted reproduction laboratory: a mini-review [J].Journal of Assisted Reproduction Genetics, 2015, 32(7): 1019-1024.
  10. Callan SP, Hannigan JH, Bowen SE. Prenatal toluene exposure impairs performance in the Morris Water Maze in adolescent rats [J]. Neuroscience, 2017, 342: 180-187.
  11. Callan SP, Kott JM, Cleary JP, et al. Changes in developmental body weight as a function of toluene exposure: a meta-analysis of animal studies [J]. Human Experimental Toxicology, 2016, 35(4): 341-352.
  12. Hokeness K, Kratch J, Nadolny C, et al. The effects of fungal volatile organic compounds on bone marrow stromal cells [J]. Canadian Journal of Microbiology, 2014, 60(1): 1-4.
  13. Inamdar AA, Moore JC, Cohen RI, et al. A model to evaluate the cytotoxicity of the fungal volatile organic compound 1-octen-3-ol in human embryonic stem cells [J]. Mycopathologia, 2012, 173(1): 13-20.
  14. Li P, Hua R, Li K, et al. Polycyclic aromatic hydrocarbons exposure and early miscarriage in women undergoing in vitro fertilization-embryo transfer [J]. Human Fertility (Cambridge, England), 2020, 23(1): 17-22.
  15. Brevik A, Lindeman B, Rusnakova V, et al. Paternal benzo[a]pyrene exposure affects gene expression in the early developing mouse embryo [J]. Toxicological Sciences : an Official Journal of the Society of Toxicology, 2012, 129(1): 157-165.
  16. Caldwell PT, Manziello A, Howard J, et al. Gene expression profiling in the fetal cardiac tissue after folate and low-dose trichloroethylene exposure [J]. Birth Defects Research. Part A, Clinical and Molecular Teratology, 2010, 88(2): 111-127.
  17. Hajagos-Tóth J, Hódi A, Seres AB, et al. Effects of d- and l-limonene on the pregnant rat myometrium in vitro [J]. Croatian Medical Journal, 2015, 56(5): 431-438.
  18. Martinez CA, Nohalez A, Parrilla I, et al. The overlaying oil type influences in vitro embryo production: differences in composition and compound transfer into incubation medium between oils [J]. Scientific Reports, 2017, 7(1): 10505
  19. Celá P, Vesela B, Matalova E, et al. Embryonic toxicity of nanoparticles [J]. Cells, Tissues, Organs, 2014, 199(1): 1-23.
  20. Simopoulou M, Sfakianoudis K, Rapani A, et al. Considerations Regarding Embryo Culture Conditions: From Media to Epigenetics [J]. In Vivo (Athens, Greece), 2018, 32(3): 451-460.
  21. Huang CH, Yeh JM, Chan WH. Hazardous impacts of silver nanoparticles on mouse oocyte maturation and fertilization and fetal development through induction of apoptotic processes [J]. Environmental Toxicology, 2018, 33(10): 1039-1049.
  22. Carre J, Gatimel N, Moreau J, et al. Influence of air quality on the results of in vitro fertilization attempts: a retrospective study [J]. European Journal of Obstetrics, Gynecology, and Reproductive Biology, 2017, 210: 116-122
  23. Wang H, Ding T, Brown N, et al. Zonula occludens-1 (ZO-1) is involved in morula to blastocyst transformation in the mouse [J]. Developmental Biology, 2008, 318(1): 112-125.
  24. Forman M, Sparks AE, Degelos S, et al. Statistically significant improvements in clinical outcomes using engineered molecular media and genomically modeled ultraviolet light for comprehensive control of ambient air (AA) quality [J]. Fertil Steril, 2014, 102(3): e91.
  25. Munch EM, Sparks AE, Duran HE, et al. Lack of carbon air filtration impacts early embryo development [J]. Journal of Assisted Reproduction and Genetics, 2015, 32(7): 1009-1017.
  26. Yin HB, Chen CH, Darre MJ, et al. Phytochemicals reduce aflatoxin-induced toxicity in chicken embryos [J]. Poultry Science, 2017, 96(10): 3725-3732.
  27. Khan Z, Wolff HS, Fredrickson JR, et al. Mouse strain and quality control testing: improved sensitivity of the mouse embryo assay with embryos from outbred mice [J]. Fertility and Sterility, 2013, 99(3): 847-854.
  28. Martinez CA, Martinez EA, Gil MA. Importance of oil overlay for production of porcine embryos in vitro [J]. Reproduction in Domestic Animals = Zuchthygiene, 2018, 53(2): 281-286.
  29. Ainsworth AJ, Fredrickson JR, Morbeck DK. Improved detection of mineral oil toxicity using an extended mouse embryo assay [J]. Journal of Assisted Reproduction and Genetics, 2017, 34(3): 391-397.
  30. Puttabyatappa M, Banker M, Zeng L, et al. Maternal Exposure to Environmental Disruptors and Sexually Dimorphic Changes in Maternal and Neonatal Oxidative Stress [J]. The Journal of Clinical Endocrinology and Metabolism, 2020, 105(2): 492-505.
  31. Gardner DK, Kelley RL. Impact of  the IVF laboratory environment on human preimplantation embryo phenotype [J]. Journal of Developmental Origins of Health and Disease, 2017, 8(4): 418-435    

 
© 2023 为本文作者所有,许可证持有人(澳门科学出版社),中国澳门
本文是一篇遵循创作共用许可证(CC BY)的开放获取文章
由此登陆,开启投稿之旅: