「兰亭诗苑」

诗意电磁学

Ising

摘要: 以诗意的语言描述电磁学的基本概念与知识。

关键词: 电; 磁; 电磁; 电磁学; 物理

南京大学物理学院 江苏 南京 210093 中图分类号: I227

这是作者为南京大学物理学院《电磁学》课程配置的一组小诗。在大学物理"力热光电"四部分课程中,《电磁学》对 我们这个时代的影响与作用是最直接和最强大的。在某种意涵上,经典和量子凝聚态物理的各个层面,都能在《电磁学》 中找到自己的先辈和前世。其中电学部分遵从中华新韵,磁学部分遵从平水韵。

一、电学部分

什么是电

君问尘寰最有常,惊雷闪耀映极光。 虽知物理一门好,须看荧屏播短长。

电荷

翰宇萌生四力分,一双孪电^①入凡尘。 焉知远近时空老,且待千年问库伦。

密里根油滴实验

相吸相斥两元分,多少全凭密立根②。 笃定鸿毛如引力,油滴轻过电一文。

通讯作者: Ising

收稿日期: 2025-09-03 录用日期: 2025-09-04

① 孪电: 正负电荷成对出现, 孪生。

② 密立根知道重力比静电力小很多,所有油滴实验方可实施。

库伦电荷定律

库伦牛顿史相惜, 反比平方作统一。 如若分毫差万里, 红尘不信有存疑。

库伦相互作用——场的概念

电荷一双别远方,相思快慢欲衡量。 古人敦信无时刻,不觉中间驶电场!

电场的激发和电场线

电场无影迹为真,起始阑终作矢身。 勉力叠加多点荷,时空失态欲断魂。

电场强度通量与高斯定理

弱强疏密访高斯, 通量为纲散度知。 无论矢空多变幻, 积分一网括囊时。

静电力场做功

静电标明保守风,起缘只认始和终。 路途艰险波折转,笃信冰心化作功。

电荷的分布

寰间电荷万千番,细细切成点点般。若果绘出容貌样,微分作曲再无难。

静电场的环路定理

足迹从来有始终,人说环路未出功。 浓缩一点求格理,聚散非空旋度空。

电势和电势能

流取东方势跃西,高低回转绕峰奇。 借君三丈添梯度,陡峭奔腾缓涧溪。

等势面

标势如山力若川, 小溪千万汇鸣湍。 谁听九派何激缓, 疏密全盘放眼前。

导体的静电平衡条件

一支金属荷千伏,静电平衡有若无。 偶尔丝毫生正负,立时十万灭余出。

法拉第圆筒实验

外荷千伏内若闲, 法拉第桶似栏栅。 听凭电闪雷鸣作, 孙亮³ 安然坐泰山。

电容与电容器

谁知能量欲何纲,导体嘉湖^③作势场。 巧取腾挪一万种,尽归多少电容装。

电场能量

电荷宣称势若虹。吾家能量可乘风。 此时谁计非君好,相对高低小大空。

电偶极子

电荷非常电偶常,世间成对好春光。 孤单爱恨长程外,极子悲欢不远扬。

电介质

静电非然导体香,绝缘极偶更芬芳。 相逢正负多牵手,相望无痕觅电场。

极化的描绘

谁从介质著知微, 电偶零星可是非。 若许外场轻唤起, 万千极矩尽朝晖。

极化强度与极化电荷

极化无形荷有形,起承挪换亦高声。 微分一点乘梯度,极化吟来缚电听。

③ 孙亮,指主讲老师孙亮。

④ 嘉湖,出自诗句"帝出三江口、嘉湖作战场";量:测量。

有电介质的高斯定理

从来介质总含羞,不见春花不见秋。 便是山川多魅影,高斯只好扩方舟。

静电场边界条件和静电场方程式

物理无边事有边,高低静电势相连。 自由收缚均须慎,为有泊松^⑤界面间。

电流强度和电流密度

君问时光枉荷流, 未明标矢弱强究。招来一幕三维景, 惟有微分定放收。

电流的连续性方程和稳恒电流

电荷纯真诺守恒, 时空变幻电流生。 信君犹比江河水, 出入高斯度往迎。

欧姆定律

海军[®] 欧姆不相识,穿越讲堂逢故知。 线性关联流与势,微观多有未深思。

焦耳定律

焦耳平生巧手传,功能力化^②总相关。 听凭转换千千种,此处流连电热间。

气体导电的经典电子论

微观物体动无形, 欧姆无非散射声。 近似随机如电子, 平衡统计乱还轻。

基尔霍夫定律

守恒约束质能流,连续分合总不休。 基尔霍夫重写过,无非一页记春秋。

⑤ 泊松, 指界面静电场的泊松方程。

⑥ 海军,指主讲老师张海军。

⑦ 化,指化学能。

复杂电路的解法

谁生电路万千条,横竖连结作网交。 不惧复杂多尽数,清规铁律解风骚。

温差电效应

热是温差电乃伏,挥毫热电写金书。 初读物理分明浅,一入深山莫问出。

半导体

左邻金属右绝缘,左右逢源纳满园。 半世青春硅作主,如今光电取山川。

RC 电路

给我机缘解数学, 电容电阻两相结。 随风从此时间入, 搅起馄饨[®]作彩蝶。

二、磁学部分

奥斯特 - 安培实验

电有归巢忘却磁, 电磁相见不相知。 汉斯^③无意春风手, 从此朝朝暮暮厮。

磁荷 [®] 与磁库仑定律

贤儒别字学渊涵, 磁石千年望北南。 大圣库仑多感佩, 拿来荷律断无语。

分子电流与毕萨定律

春秋[®] 多少圣贤酣, 莫若安培作梦谈。 分子电流灵乍现, 飞来磁性坐神龛。

⑧ 是"馄饨"而非"混沌"?"沌"乃仄声字, 姑且用"饨"化之。毕竟, 混沌中的奇异吸引子与馄饨形态相似。

⑨ 汉斯, 指汉斯·克海斯提安·奥斯特 (丹麦语: Hans Christian Ørsted)。

⑩ 磁荷的概念是典型的圣人别字,物理人以为磁力如电力一般是磁荷相互作用所致,故自然用库仑定律来描述。

⑪ "春秋"表示十八世纪近代物理兴起的辉煌时代。

磁安培定律

物理征程未等闲,安培定律示零间。 从来数学横天下,到此停留拜九关。

安培环路定理

高斯散尽络乾坤,环路安培旋度轩。 穿过磁场千万转,空余物理一维源。

磁高斯定理

世间尘事起因缘,空有磁通若柳烟。 便是高斯千佛手,无存半点可流传。

磁偶极子 ®

荷电环流一束磁,来回近远不分离。 聊为力矩驱千万,更作基元刻史诗。

磁势能 ®

磁势衡量力矩张, 本无多少好风光。 平移转动全经典, 直到叉乘量子常。

洛伦兹力与安培力

宏观磁力问前身, 物理踌躇不晓真。 待到时空原子入, 洛伦兹处讲缘因。

霍尔效应

霍尔初尝未晓知,春风化雨洛伦兹。 无非电荷横行走,量子推崇拓扑时。

等离子体

凡尘物理少云烟, 有序无瑕演大篇。 荷电万千狂热起, 随机涨落亦流传。

⑫ 磁偶极子最简单的形式就是闭合的电流环。

③ 电磁学中的磁势能不过是很平庸的物理量,借鉴于力学和电学中的势能概念,并无多少新意,虽然可以解释磁力矩平动转动做功的物理现象。但是,到了电动力学和量子力学中的磁矢势,那就是革命性的新概念,成为量子几何相位和一大波物理效应(AB效应、几何相位甚至是Berry相)的基本根源。

运动电荷的场 (9

点荷无风亦散香, 追光赶闪到新疆。 别来相对成三体, 结伴厮磨动电场。

Ising 模型 [®]

伊辛应是未逢时,相变难酬莫尽知。 一则玄文初格物,分离两态最深思。

磁介质

物理从来概念先,磁描固体淡云烟。 平均场内言千万,若到详真细细研。

磁矩

磁化乾坤谱电流,自旋公转绕圆周。曾经右手回环矩,动量纷纷序作畴。

磁场与磁感应

电流环绕矩成方, 散度为零旋度张。 物理本来源感应, 驯从介质引磁场。

磁路与磁路设计

磁流拟比电流轻, 万水千山一路峥。 大道瞬间无限远, 沟壕三寸漏希声。

电磁感应定律

电荷奔流拨动磁,百年成就傲当时。 无人料得磁生电,法拉第来方报知。

电磁感应之应用

格理深高可用无? 电磁交感作浮屠。 金圈方寸涡旋绕, 便把三山化五湖。

① 电磁学处理运动电荷的场时,主要是概念性的,并没有定量处理,因此对电动力学相对论的处理只是初步的。但是运动电荷的电磁场却是将电与磁联系起来的最初尝试,非常有价值!这里"三体"借自小说"三体",表达那些神奇的意象,如相对论!

⑤ 伊辛模型的意义并不限于磁矩的两个态,更多的是二元划分物理世界的哲学意义。伊辛生不逢时,得到的一维模型严格解没有相变,事业之路 又因为是犹太人而不能不流落他乡而基本放弃。玄文是指大作、伟大的文章。初格物是指开拓 Ising 模型这个新的物理领域。两态是指划分物理世 界为两个简并离散态的方法学。

自感互感

自感修为互感传,磁通变幻作源泉。 任凭流水高山貌,能势无形看曙烟。

磁场能量

谁言磁力线缤纷,能量求和到倚云。 若是回头观感应,当需自互感中闻。

磁滞回线与损耗

世间人物情遗传, 姑且拿来盏玉泉。 只要禅修磁滞好, 储存青史越千年。

位移电流 ®

麦克斯韦不世才, 方程留下一无猜。 位移流荷嫣然至, 宛若双双对称开。

麦克斯韦方程组

千年物理莫排名,最上云天惹重轻。 便是爱因斯坦在,亦推磁电四方程。

方程组与电磁能量传播

麦氏方程岁月跎,流传无数唱山河。 波生坡印亭中曲,场作千能万物歌。

电磁波

赞美方程赞美场,只因天下最疯狂。 电磁波自其中衍,便使时空色彩张。

致谢:感谢南京大学物理学院吴小山、张海军、孙亮三位教授支持!

后注:本文为南京大学物理学院《电磁学》课程配置,已于 2021 年 03 月 18 日由微信公众号《量子材料 QuantumMaterials》发布。

⑥ 位移电流是麦克斯韦的杰出思想所致, 我们说是猜, 也是无猜! 这也是麦克斯韦方程组对称性的要求。

Poetic Electromagnetism

Ising

(Nanjing University, Nanjing 210093, China)

Abstract: Describe the basic concepts and knowledge of electromagnetism in poetic language.

Keywords: Electricity; Magnetism; Electromagnetic; Electromagnetism; Physics

《科学与人文艺术》征稿启事

为深入探讨科学技术与人文艺术的交叉融合,推动相关领域的创新与发展,《科学与人文艺术》诚邀广大研究者、 艺术家和实践者踊跃投稿,共同探索科学与艺术的多元表现形式。

一、征稿范围

本刊所收文章体裁不拘一格,稿件可以是有关但不限于以下类型:

- •原创研究:探讨科学与人文思想的交汇、自然现象的艺术表现、技术应用的创新研究等,提供独特视角,结合科学与艺术领域的新发现和新探索。
 - •理论评论:对科学、人文或艺术领域的经典理论及新兴思想进行深度分析和评论。
 - •实践案例:展示科学与艺术结合的实际应用成果和成功经验。
 - 跨界研究: 涉及科学与人文、艺术在技术、哲学、文化中的交汇点, 为跨学科研究提供新方向。
 - 二、投稿要求

请使用 Word 文档,具体稿件要求详见本刊投稿指南(网址:https://moaj.mospbs.com/journal/about/55/680.html)

三、投稿方式

在线投稿:请注册登录官方在线投稿系统(网址: https://home.mospbs.com),选择《科学与人文艺术》杂志进行投稿。

邮箱投稿:请将文章发送至主编邮箱 kxyrwys@126.com,邮件题目按照:"投稿题目 - 作者"的格式。

我们期待您的精彩稿件, 共同推动科学与人文艺术的融合与发展!

澳门科学出版社

《科学与人文艺术》编辑部