搜索文章:
期刊:
主题:
预上线
综述 · Review

基于多模态人工智能的智慧校园交通流优化与工程实现研究

Research on Optimization and Engineering Implementation of Smart Campus Traffic Flow Based on Multimodal Artificial Intelligence


作者:秦海鹍*
 重庆公图网络科技有限公司 重庆 
*通信作者:秦海鹍;单位:重庆公图网络科技有限公司 重庆 
Appl. Intell. Eng. Technol., 2025, 1(1), 17-23;
提交日期 : 2025年08月01日 丨 录用日期 : 2025年09月26日
课题资助:自筹经费,无利益冲突需要说明
引用本文
摘 要:
本研究针对智慧校园交通流优化,提出融合计算机视觉、物联网与深度学习的多源数据处理框架,构建预测与调度模型,并通过校园场景验证其工程可行性。随着人工智能、大数据与物联网技术发展,智慧交通系统作用凸显,校园交通流的复杂动态性需多模态人工智能技术提升管理效能。本文整合多源异构数据,构建多层级协同优化架构,提出基于深度学习的数据全生命周期处理与系统协同优化方法,借鉴锅炉燃烧诊断、轨道交通客服、油藏智能化等多模态融合经验,优化校园交通流数据融合策略。通过智能交通调度系统实现精细化调整,工程验证显示模型在车辆延误与油耗控制上优势显著,为校园交通系统提供解决方案,也为城市交通智能化升级提供参考路径。
关键词:多模态人工智能;智慧校园;交通流优化
 
Abstract:
This study proposes a multi-source data processing framework integrating computer vision, Internet of Things and deep learning for the optimization of traffic flow in smart campuses, builds a prediction and scheduling model, and verifies its engineering feasibility through campus scenarios. With the development of artificial intelligence, big data and Internet of Things technologies, the role of smart transportation systems has become increasingly prominent. The complex and dynamic nature of campus traffic flow requires multimodal artificial intelligence technology to enhance management efficiency. This paper integrates multi-source heterogeneous data, builds a multi-level collaborative optimization architecture, and proposes a data full life cycle processing and system collaborative optimization method based on deep learning. It draws on the multi-modal fusion experience of boiler combustion diagnosis, rail transit customer service, and reservoir intelligence, and optimizes the campus traffic flow data fusion strategy. Through the intelligent transportation dispatching system, precise adjustment is achieved. Engineering verification shows that the model has significant advantages in vehicle delay and fuel consumption control, providing a solution for the campus transportation system and also offering a reference path for the intelligent upgrade of urban transportation
Keywords: Multimodal artificial intelligence; Smart campus; Traffic flow optimization
 
--
正文内容 / Content:
可下载并阅读全文PDF,请按照本文版权许可使用。
Download the full text PDF for viewing and using it according to the license of this paper.

参考文献 / References: 
  1. 张安元,周超然,高飞,等.基于多模态数据融合方法的动作识别技术研究[J].科技创新与应用,2025,15(23):38-40.
      
  2. 马文彬,孙丹丹,田济.基于GRNN的交通流量智能预测方法研究[J].哈尔滨职业技术学院学报,2024,(04):113-116.
  3. 周峰.基于智慧校园的交通教育管理系统优化与创新研究[J].大学,2025(22):54-57.
  4. 李庆收.基于深度学习的潜水泵故障声学信号特征提取方法[J].电声技术,2025,49(4):44-46.
  5. 熊章友,李卫军,朱晓娟,等.基于深度学习的短时交通流预测研究综述[J].计算机工程与应用,2025,61(11):67-82.
  6. 曾静,文燕,高鹏飞,汪伟.基于多尺度CNN-LSTM的智能化车流量预测方法研究[J].中文科技期刊数据库(文摘版)工程技术,2025(7):131-134.
  7. 贺旭婧,张卫亮.人工智能赋能高校智慧校园建设的洞察与创新[J].信息与电脑,2025,37(3):15-17.
由此登陆,开启投稿之旅: