搜索文章:
期刊:
主题:

生成式AI在药物分子设计中的创新路径研究——基于多模态预训练模型的实践

Research on the Innovative Path of Generative AI in Drug Molecule Design: A Practice Based on Multimodal Pre-trained Models


作者:赵飞,方静怡,刘军*
 佛山科学技术学院   广东 佛山
*通信作者:刘军;单位:佛山科学技术学院   广东 佛山
AI应用研究, 2025, 3(1), 0-0;
提交日期 : 2025年05月08日 丨 录用日期 : 2025年06月13日 丨 出版日期 : 2025年06月27日
课题资助:自筹经费,无利益冲突需要说明
引用本文
摘 要:
药物分子设计是生物医学领域的重要环节,把握其规律与特性以及实现药物研发的高效快捷是目前研究的热点。以此为背景,本文在对"生成式AI"的理论基础进行深入剖析的基础上,提出了一种基于多模态预训练模型的药物分子设计创新路径。在研究方法上,本文首先构建了一个含有大量药物分子数据的学习模型,再通过生成式AI的智能算法进行训练和迭代,最后输出符合实验目标的药物分子构造。研究结果表明,多模态预训练模型通过综合理解药物分子的结构、性能和生物活性之间的关系,能有效地实现药物分子的快速设计和优化。相较于传统方法,该创新路径大大降低了药物研发的复杂性和难度,显著提升了药物研发效率,并揭示了新药筛选的新路径,为药物分子设计领域带来了新的研究思路和实验方向。本研究对于未来药物研发的高效并行化和个性化具有项突破性的意义。
关键词:药物分子设计; 多模态预训练模型; 药物研发效率; 新药筛选新路径
 
Abstract:
Drug molecule design is a crucial aspect in the biomedical field. Understanding its patterns and characteristics, as well as achieving efficient and rapid drug development, are current research hotspots. Against this backdrop, this paper delves into the theoretical foundations of "generative AI" and proposes an innovative path for drug molecule design based on multimodal pre-trained models. In terms of research methodology, this paper first constructs a learning model enriched with a vast amount of drug molecule data. Subsequently, it employs intelligent algorithms of generative AI for training and iterative refinement, ultimately outputting drug molecule structures that align with experimental objectives. The research findings indicate that multimodal pre-trained models can effectively facilitate the rapid design and optimization of drug molecules by comprehensively comprehending the relationships among their structures, properties, and biological activities. Compared to traditional methods, this innovative path significantly reduces the complexity and difficulty of drug development, markedly enhances drug development efficiency, and unveils a new approach for new drug screening. It brings fresh research perspectives and experimental directions to the field of drug molecule design. This study holds groundbreaking significance for the future efficient parallelization and personalization of drug development.
Keywors: Drug molecule design; Multimodal pre-trained models; Drug development efficiency; New approach for new drug screening
 
--
正文内容 / Content:
可下载并阅读全文PDF,请按照本文版权许可使用。
Download the full text PDF for viewing and using it according to the license of this paper.

参考文献 / References: 
  1. 陈亚瑞,张芝慧,杨剑宁,等.基于多模态生成模型的半监督学习[J].天津科技大学学报,2022,37(02):43-50.
      
  2. Dongyu Xue,Han Zhang,Xiaohan Chena,Dongling Xiao,Yu kang Gonga,Guohui Chuai,Yu Sun,Hao Tian,Hua Wu,Yukun Li,Qi Liu.X-MOL:多样化药物小分子设计的大规模预训练模型[J].科学通报:英文版,2022,67(09):899-902.
  3. 赵宜.人机共创、数据融合与多模态模型:生成式AI的电影艺术与文化工业批判[J].当代电影,2023,(08):15-21.
  4. 李云晓,李红,陈选超.人工智能生成式预训练模型辅助的对话式学习审视[J].成都师范学院学报,2023,39(07):116-124.
  5. 李致,陈曲.生成式预训练语言模型安全风险及评估方法研究[J].电脑知识与技术,2023,19(20):54-56.
  6. 冯林,崔翔,王忠儒,等.面向AI模型训练的DNS窃密数据自动生成[J].信息安全学报,2021,6(01):1-16.
  7. 郭春镇.生成式AI的融贯性法律治理——以生成式预训练模型(GPT)为例[J].现代法学,2023,45(03):88-107.
  8. 张浩宇,王天保,李孟择,等.视觉语言多模态预训练综述[J].中国图象图形学报,2022,27(09):2652-2682.
  9. 朱若琳,蓝善祯,朱紫星.视觉⁃语言多模态预训练模型前沿进展[J].中国传媒大学学报:自然科学版,2023,30(01):66-74.
  10. 刘天义,吴祖煊,陈静静,姜育刚.面向视觉语言理解与生成的多模态预训练方法[J].软件学报,2023,34(05):2024-2034.
  11. 王惠茹,李秀红,李哲,等.多模态预训练模型综述[J].计算机应用,2023,43(04):991-1004.
  12. 张民,李俊涛.生成式预训练模型[J].中国科学基金,2021,35(03).
  13. 许文军,郑虹,郑肇谦.基于ALBERT预训练模型生成式文本摘要[J].长春工业大学学报,2022,43(06):719-725.
由此登陆,开启投稿之旅: