搜索文章:
期刊:
主题:

具身智能体的认知学习框架设计——复杂物理环境下的交互决策突破

Design of a Cognitive Learning Framework for Embodied Agents: Breakthroughs in Interactive Decision-Making in Complex Physical Environments


作者:李小梦*
 太原科技大学 山西 太原  
*通信作者:李小梦;单位:太原科技大学 山西 太原  
AI应用研究, 2024, 2(2), 0-0;
提交日期 : 2024年07月22日 丨 录用日期 : 2024年09月26日 丨 出版日期 : 2024年12月16日
引用本文
摘 要:
在复杂物理环境中实现智能体的高效交互与适应性决策是人工智能领域的重要课题。本文基于具身认知理论,提出了一种新的认知学习框架,旨在解决具身智能体在多维动态场景中的交互决策问题。研究首先分析了具身认知的理论基础及其在复杂物理环境感知与决策中的应用潜力,通过结合深度学习与强化学习技术,构建了一个可复用的框架模型。该模型能够模拟智能体在动态环境中的感知、学习、决策与反馈闭环,利用多主体合作与环境反馈机制提升决策效率。在实验方法方面,设计了一系列复杂物理环境模拟实验来测试智能体的行为表现与适应性能力。结果显示,智能体在该框架下能够显著提高环境感知的精确性,并实现更优的交互决策,表现为任务完成率的提升和错误决策率的显著下降。本文研究为具身智能体系统在动态与高不确定性环境中的应用提供了理论与技术支持,具有广泛的实际意义与潜在价值,可为无人驾驶、机器人交互以及智能助手等领域的技术突破提供参考。
关键词:认知学习框架;交互决策;复杂物理环境;深度强化学习
 
Abstract:
Achieving efficient interaction and adaptive decision-making for agents in complex physical environments is a crucial topic in the field of artificial intelligence. Based on embodied cognition theory, this paper proposes a novel cognitive learning framework aimed at addressing the interactive decision-making problems of embodied agents in multi-dimensional dynamic scenarios. The study first analyzes the theoretical foundations of embodied cognition and its application potential in perception and decision-making within complex physical environments. By integrating deep learning and reinforcement learning techniques, a reusable framework model is constructed. This model can simulate the perception, learning, decision-making, and feedback loop of agents in dynamic environments, utilizing multi-agent cooperation and environmental feedback mechanisms to enhance decision-making efficiency. In terms of experimental methods, a series of simulated experiments in complex physical environments are designed to test the agents' behavioral performance and adaptive capabilities. The results show that, under this framework, agents can significantly improve the accuracy of environmental perception and achieve better interactive decision-making, as evidenced by an increase in task completion rates and a notable decrease in error decision rates. This research provides theoretical and technical support for the application of embodied agent systems in dynamic and highly uncertain environments, holding broad practical significance and potential value. It can serve as a reference for technological breakthroughs in fields such as autonomous driving, robot interaction, and intelligent assistants.
Keywords: Cognitive learning framework; Interactive decision-making; Complex physical environment; Deep reinforcement learning
 
--
正文内容 / Content:
可下载并阅读全文PDF,请按照本文版权许可使用。
Download the full text PDF for viewing and using it according to the license of this paper.

参考文献 / References: 
  1. 刘宏宇,巩淼森,梁峭.具身认知视角下的人——智能体交互的意向立场[J].包装工程,2022,43(02):145-151.
      
  2. 袁雪蕾.具身认知视野下的小学数学深度学习初探[J].新课程导学,2021,(22):52-53.
  3. 杨彦军,张佳慧.沉浸式虚实融合环境中具身学习活动设计框架[J].现代远程教育研究,2021,33(04):63-73.
  4. 景君珺.具身认知视角下的数字化学习资源教学交互设计探究[J].电视技术,2021,45(08):150-153.
  5. 宋耀武,崔佳.具身认知与具身学习设计[J].教育发展研究,2021,41(24):74-81.
  6. 陆啸云.具身认知:促进学生深度学习[J].新教育(海南),2020,(35):85-86.
  7. 林梦园.智慧环境下具身学习设计研究[J].中国科技期刊数据库 科研,2023,(05):0040-0043.
  8. 周琦.具身认知:基于深度学习的教学实践[J].数学教学通讯,2020,0(10):34-35.
  9. 李志河,李思哲,王元臣,等.具身认知环境下大学生深度学习评价量表设计与核验[J].电化教育研究,2020,41(12):92-98.
由此登陆,开启投稿之旅: