搜索文章:
期刊:
主题:

深度学习逼近理论:超参数依赖性与泛化误差研究

Approximation Theory of Deep Learning: A Study on Hyperparameter Dependence and Generalization Error


作者:周可欣*
 湖北师范大学 湖北 黄石
*通信作者:周可欣;单位:湖北师范大学 湖北 黄石
AI应用研究, 2023, 1(1), 0-0;
课题资助:自筹经费,无利益冲突需要说明
引用本文
摘 要:
深度学习,作为人工智能领域的前沿技术,引起了学术界和产业界的广泛关注。但是,其理论基础和效率的问题尚未得到很好的解决,因此,本文尝试构建深度学习的逼近理论。我们首先阐述了深度学习的基本原理,并重点分析了超参数对深度学习模型学习效果的影响。研究发现,超参数选择在深度学习模型的性能和泛化能力中起到了关键的作用。然而,由于缺乏理论支持,超参数的选择往往依赖于人工经验和实验。为了解决这个问题,我们研究了超参数与模型泛化误差的关系,并提出了一种基于泛化误差最小化的超参数选择方法。我们的理论和实验结果显示,该方法能够有效地提高深度学习模型的性能和泛化能力。这为深度学习的理论研究提供了一个新的角度,也对实际应用有价值的参考意义。
关键词:深度学习;逼近理论;超参数;泛化误差
 
Abstract:
Deep learning, as a cutting-edge technology in the field of artificial intelligence, has garnered widespread attention from both academia and industry. However, its theoretical foundations and efficiency issues have not yet been fully resolved. Therefore, this paper attempts to construct an approximation theory for deep learning. We first elaborate on the fundamental principles of deep learning and focus on analyzing the impact of hyperparameters on the learning performance of deep learning models. Our research reveals that hyperparameter selection plays a crucial role in the performance and generalization ability of deep learning models. However, due to the lack of theoretical support, hyperparameter selection often relies on human experience and experimental trials. To address this issue, we investigate the relationship between hyperparameters and model generalization error and propose a hyperparameter selection method based on minimizing generalization error. Both our theoretical and experimental results demonstrate that this method can effectively enhance the performance and generalization ability of deep learning models. This provides a new perspective for the theoretical study of deep learning and offers valuable reference significance for practical applications.
Keywords: Deep Learning; Approximation Theory; Hyperparameter; Generalization Error
 
--
正文内容 / Content:
可下载并阅读全文PDF,请按照本文版权许可使用。
Download the full text PDF for viewing and using it according to the license of this paper.

参考文献 / References: 
  1. 高宇巍,吴岩.基于深度学习理论的碎片化知识整合[J].科教文汇(上旬刊),2021,(09):45-47.
      
  2. 田铮,龙雨.基于深度学习的单视图重建参数化CAD模型方法[J].装备制造技术,2023,(04):49-53.
  3. 彭海燕,毛开金,何阳,等.头颈放疗中Catalyst系统监测摆位误差的参数依赖性分析[J].重庆医学,2022,51(22):3824-3831.
  4. 赵毅鑫,杨志良,马斌杰,等.基于深度学习的大采高工作面矿压预测分析及模型泛化[J].煤炭学报,2020,45(01):54-65.
  5. 郑乐乐.基于熵权-逼近理想解TOPSIS理论的甘肃省生态安全评价[J].河南科技,2021,40(25):133-136.
  6. 李超超,程晓陶,王艳艳,等.洪涝灾害三参数损失函数的构建Ⅰ——基本原理[J].水利学报,2020,51(03):349-357.
  7. 赵高长,刘豪,苏军.基于参数逼近的多智能体强化学习算法[J].计算机工程与设计,2020,41(03):862-866.
  8. 李玉娟.基于改进粒子群算法的深度学习超参数优化方法[J].信息通信,2020,0(01):52-53.
  9. 浮盼盼,司琪,王鑫赛.机器学习算法的超参数优化:理论与实践[J].电脑编程技巧与维护,2020,(12):116-117.
  10. 江敏丽.重视实验误差 引领深度学习[J].物理通报,2021,50(12):128-131.
  11. 吴莎,汪健,谢新,等.基于深度神经网络构建风电机组性能模型的超参数选择[J].太阳能,2020,(09):25-30.
  12. 黄收友,伍自浩.过度泛化误差的稳健估计[J].湖北师范大学学报:自然科学版,2020,40(04):1-5.
  13. 高玉琼,赵体伟.Auslander-Buchweitz逼近理论在外三角范畴上的一个应用[J].曲阜师范大学学报:自然科学版,2023,49(01):1-9.
  14. 马桢,林佳阳,南文静,等.超微电极实验:基本原理、制备方法和伏安性能[J].电化学,2023,29(07):16-20.
由此登陆,开启投稿之旅: