搜索文章:
期刊:
主题:

基于规则的奖励机制(GRPO)在模型推理能力强化中的应用研究

Research on the Application of a Rule-based Reward Mechanism (GRPO) in Strengthening Model Reasoning Ability


作者:苏文轩*,孙博
 山西应用科技学院 山西 太原
*通信作者:苏文轩;单位:山西应用科技学院 山西 太原
AI应用研究, 2023, 1(1), 0-0;
引用本文
摘 要:
规则推理是智能系统中非常重要的一部分,它通过一系列规则和推理技术提高了系统的智能水平。本研究主要关注在模型推理能力强化中的规则推理方法。引入了一种基于规则的奖励机制(GRPO)。GRPO不仅通过规则推理提高了模型的推理能力,同时也引入了一种奖励机制来动态调整推理规则,以实现在复杂环境中的自我适应。我们基于这种机制,设计并实验了多种情境模型。实验结果表明,相对于传统的规则推理方法,GRPO在推理精度、效率和稳定性等方面都有所提升。特别是在处理模糊数据和面对新型问题时,GRPO表现出显著的优势,为模型的推理能力强化提供了新的解决方案。此研究不仅对增强模型的推理能力理论有深入理解,同时也为实践中的应用提供了有益的参考。
关键词:规则推理; 奖励机制; GRPO
 
Abstract:
Rule-based reasoning is a crucial component in intelligent systems, enhancing the system's intelligence level through a series of rules and reasoning techniques. This study primarily focuses on rule-based reasoning methods for strengthening model reasoning ability. A Rule-based Reward Mechanism (GRPO) is introduced. GRPO not only improves the model's reasoning ability through rule-based reasoning but also incorporates a reward mechanism to dynamically adjust reasoning rules, enabling self-adaptation in complex environments. Based on this mechanism, we designed and experimented with various scenario models. The experimental results demonstrate that, compared to traditional rule-based reasoning methods, GRPO exhibits improvements in reasoning accuracy, efficiency, and stability. In particular, when dealing with fuzzy data and novel problems, GRPO shows significant advantages, providing a new solution for enhancing model reasoning ability. This research not only deepens the theoretical understanding of strengthening model reasoning ability but also offers valuable references for practical applications.
Keywords: Rule-based reasoning; Reward mechanism; GRPO
 
--
正文内容 / Content:
可下载并阅读全文PDF,请按照本文版权许可使用。
Download the full text PDF for viewing and using it according to the license of this paper.

参考文献 / References: 
  1. 袁满,张维罡,李明轩.基于认知图谱的智能问答系统推理模型研究[J].吉林大学学报:信息科学版,2021,39(05):589-595.
      
  2. 申健.培养推理意识,提升推理能力[J].教学管理与教育研究,2021,6(19):73-74.
  3. 余国红,李冬梅.培养推理意识 提升推理能力[J].中小学数学:小学版,2020,(10):59-61.
  4. 马莉娟,蔡鲲鹏,张松婷.基于规则推理的旅游景区推荐系统探索[J].商丘师范学院学报,2021,37(03):7-10.
  5. 申瑞霞,黄兴丰.发展数量推理能力:新加坡模型[J].小学数学教师,2023,(06):28-32.
  6. 陈忠升.基于机器学习规则推理的湿地识别研究[J].科学大众:科技创新,2020,(10):103-104.
  7. 贾楠,张少霞,翟岩慧,等.决策蕴涵上的推理规则和推理过程研究[J].计算机科学与探索,2020,14(02):344-352.
  8. 于秀娟.建构规律模型 培养推理能力[J].基础教育论坛,2021,(27):6-7.
  9. 彭程,乔颖,王宏安.基于规则推理的实时信息物理监控系统[J].计算机系统应用,2020,29(07):70-81.
  10. 顾峰.基于核心素养的高中数学逻辑推理能力强化分析[J].数理化解题研究,2022,(27):38-40.
  11. 黄德根,张云霞,林红梅,等.基于规则推理网络的分类模型[J].软件学报,2020,31(04):1063-1078.
  12. 范秀琴,喻洪流,杨宇辉,等.基于案例推理-规则推理混合推理的脊髓损伤智能辅具适配系统[J].中国康复医学杂志,2022,37(08):1084-1088.
  13. 訾薇宇.基于规则推理的财务共享信息自动入库系统[J].自动化技术与应用,2022,41(11):100-103.
由此登陆,开启投稿之旅: